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ABSTRACT 

The heat capacity ratios Cp/Cv of He and N2 have been determined by the adiabatic 

expansion method. The studies were performed using an 18.0 L carboy kept in a quasi-

isothermal temperature modulated water bath at 298 K. Pressure measurements were 

made with a standard dibutyl phthalate manometer. The reliability of the results is quite 

good, with Cp/Cv values and the corresponding average 95% confidence limits for five 

measurements being 1.65 ± 0.04 for He and 1.44 ± 0.01 for N2. The Cp/Cv ratio for He 

agrees well with the theoretical value obtained from the classical equipartition theorem 

for a monatomic gas with three translational degrees of freedom. The experimental Cp/Cv 

ratio for N2 is closer to the theoretical value without vibrational contribution [7/5], than 

the corresponding value with vibrational contribution [9/7] due to the energy requirement 

of its vibrational mode, which according to our calculation, becomes fully active above 

3395 K.  

 

INTRODUCTION 

For an ideal gas, Cp = CV + R , where Cp and CV are the molar heat capacities at constant 

pressure and volume, respectively. For an arbitrary real gas a slightly more complicated 

relationship between these heat capacities may be derived from the equation of state. The 

difference between heating a gas at constant volume and constant pressure is equal to the 

work of expansion. This ratio is denoted by the symbol gamma. 

Cp/Cv = γ (1) 

In considering theoretical calculations for the heat capacities of ideal gasses one can 

employ a simple model and assume that heat intake is equipartioned among the possible 

modes of energy available to the gas. In thermodynamics we categorize such energy 

storage modes or degrees of freedom based on the number of independent coordinates 

needed to specify the position and configuration of all the atoms in the molecule at any 



point in time. A molecule of N atoms therefore has 3N degrees of freedom (DOF). These 

could be assigned to the coordinates of the individual atoms, or classified as follows  [1]: 

- Translational degrees of freedom: 3 independent coordinates specify the center of mass 

of the molecule. 

- Rotational degrees of freedom: All molecules containing more than a single atom 

require specification of their orientation in space. Rotation of a diatomic molecule can be 

described by two rotational degrees of freedom since rotation about the internuclear axis 

leaves the molecule unchanged. Non-linear molecules require three rotational degrees of 

freedom.  

- Vibrational degrees of freedom: The displacements of the atoms from their equilibrium 

positions can be described by 3N-5 DOF for linear molecules and 3N-6 for non-linear 

molecules. These values are determined by the fact that the total number of DOF must be 

3N. For each vibrational DOF there is an associated normal mode of vibration of the 

molecule with characteristic symmetry properties and a characteristic harmonic 

frequency. 

In classical statistical mechanics, the equipartition of energy theorem associates an 

energy of one half RT per mole with each quadratic term in the Hamiltonian or per 

degree of translational or rotational freedom [2]. Here, R is the Molar Gas Constant and T 

is the absolute thermodynamic temperature. A monotonic gas like He has no vibrational 

or rotational energy terms. As such, all energy must be contained in translational motion. 

Ktrans = [1/2m] X [px
2 + py

2 + pz
2]  (2) 

Where m is the mass and px, py, and pz are the three spatial components of the molecule’s 

momentum. For an ideal gas the kinetic energy each molecule is independent and their 

potential energy of interaction depends only on their position coordinates (does not 

involve px, py, and pz). The same can be said about any internal rotational, vibrational, 

electronic, or nuclear degrees of freedom of the molecule. Thus as far as the classical 

approximation is concerned, the essential conditions of the equipartition theorem are 

satisfied. Equation 2 contains three independent quadratic terms, hence three degrees of 

freedom. With one half RT per DOF, the translational contribution to the molar heat 

capacity of an ideal gas such as He is: 

(CV)trans = 3RT/2 (3) 



The quantized translational energy levels of an individual molecule are given by the 

Schrödinger equation [3], 

E = [ђ2π2/2mL2] X [n1 + n2
 + n3]  (4) 

Where L is one of the dimensions of the container and n are principal quantum numbers. 

For a laboratory-sized container such as an 18.0 L carboy, the spacing between the 

energy levels is very small and the translational degrees of freedom can be treated 

classically.  

The electronic DOF associated with the possible configurations of electrons orbiting the 

atomic nuclei are frozen at room temperature. Similarly, nuclear degrees of freedom are 

frozen because they require activation energies far above what is available at room 

temperature. The only remaining DOF are rotational and vibrational.  

The rotational kinetic energy of a molecule is given by 

Krot = [Ixω x
2 + Iyω y

2 + Izω z
2] / 2  (5) 

where Ix, Iy, and Iz are the moments of inertia of the molecule about the X, Y, and Z axes 

axes and ω x, ω y, and ω z
 are the angular velocities about these axes. No other degrees of 

freedom depend on the angular velocities of rotation. With one half RT per DOF, the 

rotational contribution to the molar heat capacity of gases is: 

(CV)rot = 3RT/2 (6) 

For a linear diatomic molecule such as N2, one of the principle axes lies along the N≡N 

bond. The moment of inertia about an axis is MR2, here R is the diameter of a nitrogen 

atom. For such a minuscule distance of separation, the moment of inertia about the N≡N 

bond is negligible compared to the other two.  

The energy levels of a rigid rotor are given by [3], 

E = [ђ2/2I] X J[J +1] (7) 

Where J is an integer. Notice that the moment of inertia is inversely proportional to the 

spacing between the rotational energy levels of a rigid rotor. Thus we expect the 

rotational degree of freedom associated with spinning along the line of centres of the 

atoms (the N≡N bond for N2) to be frozen out at room temperature.  

Each vibrational mode behaves like an independent harmonic oscillator and contributes 

RT to the heat capacity of the gas. In general, a molecule containing N atoms has N -1 

normal modes of vibration. For example, N2 has only one normal mode, corresponding to 



periodic stretching of the bond between the two nitrogen atoms. Thus, the classical 

contribution to the specific heat from vibrational degrees of freedom is 

(CV)vib = [N - 1]RT (8) 

 
Figure 1. Setup for the Clement and Desormes’ method. The tube being held by the student is to be kept open to 
let the gas out of the container during the evacuation process and pressure adjustment prior to the first step of 
the experiment. 
  

A two step process can be used to experimentally determine γ [4]: 

i. An adiabatic reversible expansion from the initial pressure p1, to the intermediate 

pressure, p2

[P1, V1, T1]  [P2, V2, T2]  (9) 

ii. Restoration of the temperature to its initial value T1, at constant volume. 

[P1, V1, T1]  [P3, V2, T1]  (10) 

The first law of thermodynamics states: 

dU = dq + dw  (11) 

And since for any adiabatic process dq = 0, 

dU = dw = -pdV  (11) 



and at constant volume, the heat capacity relates the change in temperature to the change 

in internal energy, 

dU = CV dT  =  -pdV (12) 

Inserting the ideal gas law (PV = nRT) and integrating each side, 

CV ln[Tf/Ti] =  -R ln[Vf/Vi]  (13) 

Equation 13 predicts the decrease in temperature accompanying the reversible adiabatic 

expansion of an ideal gas. In terms of the initial and final pressures this means that for an 

ideal gas, 

[T2/T1] =  [P2/V2] / [P1/V1]  (14) 

what yields, 

CV ln{[P2/V2] / [P1/V1]} =  -R ln[V2/V1] =  CV { ln [P2/P1] + ln [V2/V1]}  (15) 

Since for an ideal gas, Cp = CV + R, 

ln[P1/P2] =  [Cp / CV] ln [V2/V1]  (16) 

For step ii the temperature is restored to T1,  

[V2/V1] = [P1/P3]  (17) 

where P3 is the final pressure of the gas after the adiabatic expansion step and its return to 

the initial temperature. Equation 17 can be rewritten in the form 

γ = ln [P1/P2] / ln [P1/P3] (18) 

This is the principle involved in the Clement and Desormes’ method.  

 

EXPERIMENTAL SECTION 

The adiabatic expansion experiments were carried out using the apparatus shown in 

Figure 1. The 18.0 L carboy was tied up (to avoid bouyancy) in a quasi-isothermal 

temperature modulated water bath at 298 K. The gas to be studied was swept through the 

carboy at a rate of 6 L/min for 10 min. The flow rate was measured by displacing 500 mL 

of water from an inverted Erlenmeyer flask held under water in the bath. In order to 

ensure complete evacuation of the air, the gas inlet was introduced down to the bottom 

part of the carboy during the process. Recall that He is lighter than air and leaving the gas 

inlet near the top of the carboy would create a body of helium floating in the air, affecting 

the evacuation process. The gas initially contained in the carboy was at a pressure P1 

slightly higher than atmospheric pressure P2. The adiabatic reversible expansion was 



carried out by quickly removing and replacing the stopper in the carboy (step i). The gas 

remaining in the carboy was then allowed to return to its initial temperature T1 and final 

pressure P3 by heat transfer from the bath. The time allowed for this step was 15 min. The 

initial pressure P1, and the final pressure P3 were read using a standard dibutyl phthalate 

manometer. Pressure readings were converted to cm of Hg by multiplying the cm of 

dibutyl phthalate by the density ratio of dibutyl phthalate-to-mercury, 

cm Hg = cm of dibutyl phthalate X {[1.046 g/cm3] / [13.5 g/cm3]}  (19) 

These were then added to atmospheric pressure to obtain the corrected P1, and P3. 

The thermodynamic expressions used to derive the heat capacity ratio apply only to the 

part of the gas that remains in the carboy after the stopper is replaced since molar 

volumes and molar heat capacities were used. Still, the reversibility of the expansion can 

be justified if one imagines an invisible surface separating the gas that remains within the 

carboy and the gas that escapes when the stopper is removed (Figure 2). The gas below 

this surface expands in an approximately reversible way against the surface. Work is 

done as the upper gas is pushed out. Where do we define the boundaries of the system? 

The Clement and Desormes’ method works reasonably well if the stopper in the carboy is 

replaced fast enough and the carboy throat diameter is between 2 and 3 cm. When these 

two conditions are met, a boundary can be clearly defined since the atmospheric pressure 

acts only outside the neck of the carboy.  

 
Figure 2. States of the expanding gas. The upper portion of the gas (the part that is let out) acts as a nearly 

massless piston. If the timing is just right, the process can be assumed to be adiabatic.  

 



RESULTS 

To determine the [Cp / CV] ratio, two different gasses were used: He and N2. The gases 

used had been swept through the carboy at a rate of 6 L/min for 10 min and were 

protected against thermal flunctuations; which did not exceed 1.0 degrees when 

comparisons were made between T1 and T2. Since all pressures enter the calculations as 

ratios, the actual temperature is not as important as the difference between the initial and 

final state temperatures. Since this difference was rather small, all pressures were used 

without corrections for thermal flunctuations. A standard atmospheric pressure (7.60 cm 

of Hg) was added to the manometer readings after converting to cm Hg using Equation 

19, for example: 

cm Hg = 27.5 cm of db phthalate X {[1.046 g/cm3] / [13.5 g/cm3]} = 2.13 cm of Hg 

Corr Pressure = 2.13 cm of Hg + 7.60 cm of Hg = 9.73 cm Hg 

[Cp / CV] ratios were computed using Equation 18 and setting P2 equal to 7.60 cm Hg. For 

P1 equal to 9.73 cm of Hg and P3 equal to 8.38 cm of Hg we get:  

γ = ln [9.73 cm of Hg /7.60 cm] / ln [9.73 cm of Hg /8.38 cm of Hg] 

γ = 1.65 

The [Cp / CV] ratio was determined five times for each gas, the values reported in Table 1 

are the average values of each data set: 

Av. [Cp / CV] for He = [1/5] X [1.59 + 1.65 + 1.66 + 1.69 + 1.65] = 1.65 

The corresponding 95% confidence limits were obtained using t = 2.13 for four 

independent measurements. 

S2 for He = [1/4] X [(-0.06)2 + (0.00)2 + (+0.01)2 + (+0.04)2 + (0.00)2] 

S for He = 0.0364 

[λ95] for He = [0.0364 X 2.13] / √4 ≈ +/- 0.04 

Since for an ideal gas, Cp = CV + R , and from Equation 1, Cp/Cv = γ. The experimental 

heat capacities (EXP Cp and CV in Table 1) were obtained from the average values of γ. 

Cv for He = R / [γ-1] = [8.31 J/mol*K] / [1.65 -1] = 12.78 J/mol*K  

Cp for He = Cv + R = [12.78 J/mol*K] + [8.31 J/mol*K]  = 21.09 J/mol*K 

Our experiments indicate that the heat capacity can be predicted reasonable well for ideal 

gasses. As shown in Table 1, the He data set fits all the thermodynamic parameters when 

rounded off to the first decimal place, which is within the limit of the equipment’s 



capabilities. Although the thermodynamic parameters for N2 seem a little off, the value 

for γ is very close to the prediction of the equipartition of energy theorem if the N2 

vibrational modes are assumed to be frozen out. 

GAS 

 

PRED γ 
 

ΩLIT CV 

(J/mol*K) 

ΩLIT Cp 

(J/mol*K) 

EXP γ 
 

EXP CV 

(J/mol*K) 

EXP Cp 

(J/mol*K) 

       

He 5/3 12.814 20.786 1.65 +/- 0.04 

 

12.78 21.09 

N2 9/7; ξ7/5  20.820 29.134 1.41 +/- 0.01 

 

18.89 27.20 
       

Table 1. Results from the adiabatic expansion measurements and corresponding literature values. The PRED γ values 
are those predicted by the equipartition of energy theorem. 
ΩFrom P. Atkins, "Physical Chemistry", 5th ed., W. H. Freeman, New York (1994). 
ξWithout vibrational contribution. 
 

DISCUSSION 

In the present study the Clement and Desormes’ method was employed to determine the 

[Cp/Cv] ratio for gasses. In an effort to highlight the differences between an ideal gas with 

three degrees of translational freedom and a nonideal gas possessing vibrational in 

addition to translational degrees of freedom, two different gasses (He and N2) were used. 

The heat capacities were predicted with different degrees of error, which reflect the 

differing ideality (or nonideality) these two gasses. Nevertheless, the [Cp/Cv] ratios 

agreed considerably well with those obtained using the equipartition of energy theorem. 

The differences can presumably be attributed to the differing sensitivities of the Clement 

and Desormes’ method and the degree to which the process was kept adiabatic. For 

example, differences in carboy’s neck diameter will allow different amount of heat 

exchange between the air in the room and the gas in the carboy. The time during which 

the carboy is kept open to the atmosphere will also affect the results: if the time is too 

short, the gas will not drop to atmospheric pressure and the value of γ will be high; if the 

time is too long, the gas will exchange thermal energy with the air in the room and value 

of γ will be low.  

In addition to the possible experimental errors, the extent to which the vibrational degrees 

of freedom contribute to the results cannot be ignored. From Equation 8, the classical 



contribution to the specific heat from vibrational degrees of freedom [N - 1]RT, where N 

is the number of atoms in the molecule. Thus N2 is predicted to have an RT J/mol*K 

contribution from its single vibrational mode. However, our results indicate that this 

vibrational mode is not fully active. At what temperature Θvib will the vibrational 

contribution attain its classical equipartition value? To answer this question, the 

vibrational contribution Cvib was rewritten in the form [3] 

Cvib = R {[(Θvib/T) e-(Θvib / 2T)] / [1 - e-(Θvib / T)]} (20) 

Where Θvib is the critical high temperature limit and can be obtained from 

Θvib = [hcυ] / k (21) 

Where h is Plank’s constant, c is the speed of light, υ is the energy required to activate the 

vibrational mode of N2, and k is the Boltzmann constant. Using υ = 2358 cm-1 [5] we get: 

Θvib = [6.626 X 10-34 J/s] X [3.00 X 1010 cm/s] X [2358 cm-1] / 1.380 X 10-23 J/K 

Θvib = 3395 K 

The Cvib contribution to the heat capacity at 278 K was then predicted from Equation 20. 

Cvib = R {[(3395 K / 298 K) e-(3395 K / 596 K)] / [1 - e-(3395 K / 298 K)]} 

Cvib = R {3.825 X 10-2} = 0.3178 J/mol*K 

It can be seen from Table 1 that these are pretty accurate predictions for N2. The freezing 

out of vibrational degrees of freedom becomes gradually less effective as molecules 

become heavier and more complex. This effect can be accomplished by either weakening 

of the chemical bond (decreasing the force constant) or increasing the molar mass 

(increasing the effective mass).This accounts for the non-classical heat capacity of 

N2. Here, the vibrational mode contributes to the heat capacity by a value less than R 

because the temperature is not high enough. 
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